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1. Introduction

Recent works have indicated that in brane inflation models cosmic strings are copiously

produced during the brane collision [1, 2]. This has led to a renewed interest in the physics

of cosmic strings and to consider the exciting possibility that there could be long-lived

fundamental strings of cosmic size (for reviews, see [3 – 6] and references therein). Finding

such objects could constitute a test of string theory.

The dynamics of cosmic strings could lead to interesting astrophysical events such as

gravitational waves or black hole formation. Some aspects of the dynamics of cosmic string

interactions were studied in [7, 8] (for Abrikosov-Nielsen-Olesen strings, see recently [9]).

Here we will develop in full detail the classical formalism of string splitting, joining and

intercommutation. Our formulas (appendix) provide explicit expressions for the outgoing

string solution starting with an arbitrary initial string configuration before interaction.

Understanding the dynamics and the different features of splitting and joining processes is

of interest, since these processes are the basis of the interaction rules in string theory.

As an application, we will study the process of possible gravitational collapse as a result

of the collision of cosmic fundamental strings. Surprisingly, we will find that gravitational

collapse is a quite common phenomenon ensuing the encounter of strings of equal and
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opposite maximal angular momentum, which classically are rotating straight strings, and

folded in the case of the closed string. If the initial strings just touch at the end points,

then they can join forming one single string. If they meet at some intermediate point, then

they can interconnect giving rise to two new strings.

We then study the evolution of the resulting strings by the standard flat spacetime

dynamics. We find that they typically contract in a finite time to a minimum size, which

sometimes is smaller than the gravitational radius Rs.

If the strings meet with zero relative transverse momentum, we find that, for generic

values of the intersecting positions and angle, a finite fraction of the mass of the resulting

interconnected strings collapses into a mathematical point.

In any of these situations, gravitational forces become very strong when the string

size approach Rs and should enhance the evolution towards the collapse, ensuing in the

formation of a horizon and hence a black hole [10 – 12] (other discussions can be found e.g.

in [13, 14]). In our computation the mass (proportional to the length) of the strings appear

as an overall scale, therefore this phenomenon can occur for arbitrarily large values of the

mass.

If the transverse momentum is not zero, then the resulting strings will be stretched in

the transverse direction. The size is of the order of the length times the relative transverse

velocity v. For non-relativistic relative motions with v much less than the product of the

gravitational constant times the string tension, this size will be much smaller than the

gravitational radius. We conclude that also in this case, the interconnection of our strings

generically leads to the formation of a black hole.

We also consider a long-lived version of the string with maximum angular momentum.

This is a closed string with some component in extra dimensions, whose motion in 3 + 1

dimensions is the same as the open (or folded) string with maximum angular momentum.

We discuss for which range of the parameters and for which magnitudes of cross sections

black hole formation is to be expected.

2. New examples of long-lived cosmic strings

We consider type II strings in the presence of D branes or with extra dimensions com-

pactified on a torus. We are interested in constructing cosmological strings where breaking

processes are suppressed, leading to long-lived configurations. Such strings decay primarily

by emission of soft gravitational radiation.1

2.1 Rotating straight string on M4 × S1

Let t,X, Y, Z represent uncompact coordinates of M4 (3+1 dimensional Minkowski space)

1The most stable massive non-BPS closed string in type II string theories seems to be a circular string

rotating in two or more planes [15], for which breaking is maximally suppressed and radiation is feeble. We

will not study this string in this paper.
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and W compact dimensions of radius R. The solution is as follows:

X = L cos τ cos σ , XR(σ−) =
1

2
L cos σ− , XL(σ+) =

1

2
L cos σ+ ,

Y = L sin τ cos σ , YR(σ−) = −1

2
L sin σ− , YL(σ+) =

1

2
L sin σ+ ,

W = nRσ , WR(σ−) =
1

2
nRσ− , WL(σ+) =

1

2
nRσ+ ,

t = κ τ , κ =
√

L2 + n2R2 , (2.1)

where σ± = σ ± τ , σ ∈ [0, 2π) and n is an integer representing the winding number.

The solution is classically unbreakable for n = 1. This can be seen as follows. The

closed string can break only if at some given time (say τ = 0) there are two different points

of the string which get in contact, i.e. ~X(σ1) = ~X(σ2) for the non-compact coordinates,

and for the compact coordinate W (σ1) = W (σ2) + 2πkR for some k. Using this condition

for X and Y we find σ1 = 2π − σ2. Now the condition for W gives π − σ2 = kπ/n. For

n = ±1 this gives σ1 = σ2 = 0 mod 2π, which means that the string cannot break because

the two points coincide and thus there is no string left between them. For |n| > 1, one

always has at least one solution with σ1 6= σ2, and the string can break.

A well known stable string on M4 × S1 is the BPS string [16, 17] ~X = ~XL(σ+),

W = nRσ + 2α′m/R. In our case, the mechanism for stability is different. Although the

string looks folded in 3+1 dimensions – and in fact it looks identical to the unstable rotating

string of maximal angular momentum [18, 19] – it cannot break classically because all points

of the string are separated in the internal dimension W . If R À
√

α′, then breaking by

quantum effects is also suppressed. As mentioned above, it can decay by radiation, with a

rate (in four dimensions) [19] Γ ∼ g2
s M , M ∼ µL, where µ = (2πα′)−1 is the string tension

and gs is the closed string coupling constant. The radiation is dominated by soft modes

with emitted energy ω ∼ 1/L. Thus

−dM

dt
∼ Γ × ω ∼= c0g

2
sµ , (2.2)

where c0 is a numerical constant of order one. Therefore the string takes a time ∼ M/g2
s

(or ∼ L/g2
s ) to substantially decrease its mass.

2.2 Rotating open string which oscillates in extra dimensions

Consider a brane-world model, with a D3-brane placed in the three uncompact directions

X,Y,Z of our universe. Let W stand for an extra dimension. The open string solution

with Dirichlet boundary conditions at W = 0 is given by

X = L cos θ cos τ cos σ , Y = L sin τ cos σ ,

W = L sin θ sin τ sin σ , t = L τ , L = 2α′M . (2.3)

This solution is the analog of the squashing closed string of [19] in the case of an open

string. In fact, it has the same form, but here σ ∈ [0, π) whereas for the closed string

σ ∈ [0, 2π).
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The solution represents a string rotating in the plane X,Y , with the ends attached

on the brane W = 0, which at the same time oscillates in the extra dimension W (with

maximum amplitude ±L sin θ for the middle point). The string can break only at the special

times where it lies on the brane W = 0, namely τ = nπ, as otherwise it is impossible to

get Neumann conditions on the free endpoints in the W direction. The time between two

successive events, when much of string lies within a width ∼ ls ≡
√

α′ from the brane, is

of the order of L. Therefore, for L large and assuming L sin(θ) À ls, this string lives a

long time ∼ L ∼ M , before breaking into massive pieces. In the following, we will consider

the interactions of strings during this time interval, in which the breaking is exponentially

suppressed, since it is classically forbidden.

As an aside remark, we can note that during the time ∼ ls in which the string lies

on the brane, it will break with a probability that using the rules of [19] is found to be

∼ g2
oL/ls, where go is the open string coupling constant and g2

o = gs. If this is much less

than one, it may take several cycles (a number of order ls/(g
2
oL) ) for the string to break,

each cycle lasting a time ∼ L.

The string nevertheless loses energy at all times by gravitational radiation.2 The decay

rate by massless emission can be estimated following the analysis of [15, 19]. In these works

the classical radiation rate was found to be a function of L and of the emitted energy ω of

the following factorized form:

Rate(N0) ∼ L5−D · F (N0) . (2.4)

where D is the number of uncompact spacetime dimensions and F (N0) is a decreasing

function of the integer N0 ≡ Lω. Therefore, for large L, the massless emission is concen-

trated at small ω, where the classical result is expected to hold. The highest decay rate

occurs in the case of D = 4, since spaces with D > 4 have a decay rate suppressed by

inverse powers of L. For D = 4, by summing over N0 we find that

Γgraviton ∼ g2
s

√
N , N = α′M2 . (2.5)

Since, as in the previous example of section 2.1, the radiation is dominated by soft modes

with emitted energy ω ∼ 1/L, the lifetime required for a substantial decrease of the energy

is again of order M/g2
s . In spaces with D > 4, this string lives an even longer time.

3. Black hole formation

3.1 By joining of strings

In this subsection we show an example of a process where two long strings join by their

ends and the resulting string becomes very small (in fact, pointlike) during the evolution.

First, consider two open strings with maximum angular momentum, zero linear mo-

mentum and equal energies described by the solutions: XI,II(τ, σ) = XI,IIL(τ + σ) +

2Emission of vector bosons can be shown to be suppressed with respect to graviton emission by inverse

powers of L.
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Figure 1: Evolution of the open string which results from the joining of two open strings with

maximum and opposite angular momentum.

XI,IIL(τ − σ) with

XI(σ, τ) = L cos σ cos τ , YI(σ, τ) = L cos σ sin τ ,

XIL(s) =
L

2
cos s, YIL(s) =

L

2
sin s

XII(σ, τ) = 2L + L cos σ cos τ , YII(σ, τ) = −L cos σ sin τ ,

XIIL(s) = L +
L

2
cos s, YIL(s) = −L

2
sin s (3.1)

The strings I and II have equal and opposite angular momenta given by JI = L2/α′,

JII = −L2/α′. As they rotate, the end σ = 0 of the string I touches the end σ = π of the

string II at τ = nπ, n = integer.

Consider the situation where the strings join at τ = 0. The resulting open string

solution has J = 0, since angular momentum is conserved and the original total angular

momentum of the system is zero. By applying the formulas of appendix A, we find the

solution after the joining: X(τ, σ) = XL(τ + σ) + XL(τ − σ) with

XL(s) =

{

L + L
2 cos 2s −π

2 ≤ s < π
2

−L
2 cos 2s π

2 ≤ s < 3π
2

YL(s) = −L

2
sin 2s . (3.2)

This solution is shown in figure 1. It describes an open string which at τ = 0 is completely

straight, then it bends and contracts until it becomes a point at τ = π/2. The solution is

periodic with period π.

Note that the joining process can occur at the lowest order in string perturbation

theory (with probability O(g2
o) once one has got this initial configuration).

So far gravitational effects have not been taken into account. We start with two long

straight strings Jmax + antiJmax which join forming an open string with J = 0 in a regime

where its size is much larger than the gravitational radius Rs. In this regime, the evolution

of the string is governed by the classical string equations of motion in flat spacetime. As
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the open string reduces its size, gravitational effects become more and more important.

A string which reduces to a point should clearly undergo gravitational collapse. This

should happen when the size of the string becomes smaller than Rs. For a string of length

` ∼ M/µ, where µ = 1/(2πα′) is the string tension, the gravitational radius is Rs ∼ 2Gµ`.

Therefore, when the string contracts by a factor of order (Gµ)−1, gravitational collapse

should be inevitable and a horizon will form [10 – 12].

One important question is whether the open string could radiate out most of its energy

before its size becomes smaller than the Schwarzschild radius. There are two decay chan-

nels: the radiation channel, where the string emits a graviton, and the massive channel,

where the string breaks into two pieces.

Let us first consider the massive channel. The evolution of the two pieces after the

breaking can be followed by using the general formulas of appendix A. Because of mo-

mentum conservation, in the present case each piece will carry a momentum in the inward

direction. Therefore the system cannot lose energy by breaking. This argument ignores

gravitational effects. Taking into account the attractive nature of gravitational forces re-

inforces the fact that each piece will follow an inward collapse.

The radiated energy can be estimated with the rules of [19]. For a smooth string in

four dimensions (and even if there are kinks), the mass loss rate is given by eq. (2.2). For

this string, t = 2α′Mτ = M
πµ τ . As the string loses mass, the value of M is changing.

This process is very slow for large M , so we can follow it adiabatically and assume that

at each time the string is described by the same solution with M(t). We then write

dt = 1
πµ (Mdτ + τdM). Hence

−dM

M
∼= c0g

2
sdτ

π + c0g2
sτ

. (3.3)

The total energy radiated from the initial configuration until the string becomes a point is

obtained by integrating this equation from τ = 0 to τ = π/2. We get

M
(

τ =
π

2

)

= β M(τ = 0) , β =

(

1 +
c0g

2
s

2

)−1

. (3.4)

Since c0 is a number of order 1, this mass is of the same order of the initial mass. This

shows that a black hole will be formed before the string becomes a point.

The starting point of the above example involves two open strings, which we know to

be unstable. The same process can occur for the long-lived strings of section 2.

In the case of the joining of two rotating open strings which oscillate in extra dimensions

(section 2.2), when the amplitude of oscillation is much smaller than the length of the string

(corresponding to the parameter θ ¿ 1 in eq. (2.3)), the dynamics of the joining process is

essentially the same as in the above example (at the same time, the amplitude of oscillation

must be much larger than
√

α′ to suppress breaking by quantum effects).

In the other case, that is considering the joining of two rotating straight closed strings

on M4 × S1 with winding number n = 1 (section 2.1), one can easily see that the joining

equations for the X,Y coordinates are the same as for the open string case seen above. It
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is also easy to see that the joining conditions are satisfied in the W coordinate, giving rise

to two possible solutions, with winding 0 or with winding equal to 2.

As an aside remark, we note that, as far as the flat space evolution is concerned, as the

string (3.2) is contracting, the ends of the string approach each other, and they touch only in

the limit that the string is a point. Although in this limit quantum and gravitational effects

are important, it is nevertheless interesting to follow the classical world-sheet evolution.

When the ends of the string touch, there is a certain probability given by the coupling

constant g2
o that they join forming a closed string. The resulting solution is obtained by

defining ~XL(s) and ~XR(s) to be equal to the open string ~XL,R at τ = π/2 and, for τ > π/2,

one imposes closed string boundary conditions, ~X(τ, σ + 2π) = ~X(τ, σ). Remarkably, the

resulting solution is the pulsating circular string solution described by (we set the center

of mass coordinate to zero)

X(σ, τ) = 2L cos σ cos τ , Y (σ, τ) = 2L sin σ cos τ ,

XL(s) = XR(s) = L cos s, YL(s) = YR(s) = L sin s . (3.5)

Another remark is that the circular pulsating string can be obtained from the quan-

tum scattering of two gravitons. In ref. [19] it was remarked that the quantum ampli-

tude for the process two gravitons ↔ pulsating string is the same as the amplitude for

two gravitons ↔ Jmax string. The rate of the last process was computed in ref. [20]

and checked in ref. [21]. From these results, we find the rate for the present process of

two gravitons forming a pulsating circular string: Γ ∼ g2
se

− 1

2
α′M2(log(4)−1) where M is the

mass of the pulsating string. Once the circular pulsating string is formed, it should in-

evitably collapse into a black hole (if it is not already inside the horizon, it will shrink with

a negligible probability of breaking [19]). Therefore, this process provides an example of

a first-principle calculation based on string perturbation theory of black hole formation.

The cross-section for that particular final state is exponentially small. In four spacetime

dimensions: σ ∼ α′g2
se

− 1

2
α′M2(log(4)−1).

3.2 By interconnection of two strings

In the previous example, black hole formation requires a special initial configuration such

that the endpoints of the two strings touch during the evolution. A more generic process

is the case of string interconnection.3

When two fundamental strings cross, there is a probability given by the string coupling

that the strings will interconnect, as in figure 2. As shown in the figure, there are two pos-

sible ways that the string can interconnect. This is a common process in 3+1 dimensions,

where two infinitely long strings always cross for generic initial data. For finite-size strings,

the collision has a cross section of the order of the square of the length of the string.

An interesting question is what is the probability that a black hole is formed as a

result of the collision. Computing this from string perturbation theory is obviously very

complicated, so we will try to address this question by means of the following experiment:

3For open strings, this process corresponds to the u-channel open string diagram (we thank D. Amati

for a discussion on this point).
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Figure 2: Interconnection process. When two strings cross, there are two possible ways that they

can interconnect, leading to strings a and b or strings c and d.

we send two straight rotating strings against each other, with random position for the center

of mass coordinates and random value for the relative orientation (within the range where

the interconnection is possible). After repeating the experiment Ne times, we ask how many

of the resulting string configurations are black holes. We will consider several conditions for

black hole formation. One condition is that one of the two final strings completely lie inside

its Schwarzschild radius Rs at some time during the evolution (ignoring detailed features

due to the angular momentum). Another condition is that at some time the average size of

the string lies inside its Schwarzschild radius. Finally, a third condition, is that a segment

of the string lies within the Schwarzschild radius. In our study, the reduction to a small

size just follows by the natural shrinking of the string that results from flat space evolution,

without taking into account gravity. In any of these three situations, gravitational forces

become very strong when the string size approach Rs and should enhance the evolution

towards the collapse.

Consider first the interconnection of two rotating open strings of the type described in

section 2.2. They rotate in the plane X,Y , oscillate in the extra W dimension, and they

may also have transverse momentum in the Z direction on the brane. We will consider

the case of opposite angular momentum in the X,Y plane. After interconnection, the

two emerging strings also spread in the Z direction. When the center-of-mass transverse

Z-motion of the string is non-relativistic, the spread in the Z direction can be neglected

as compared to the spread in the X,Y direction. In addition, as discussed in the previous

joining case, when the amplitude of oscillation in the W direction is much smaller than

the length of the string (corresponding to the parameter θ ¿ 1), the dynamics of the

interconnection process is essentially the same as that of the interconnection of two open

strings of maximum angular momentum. Therefore, to simplify the discussion, we will first

consider the case of two open strings with equal and opposite maximum angular momenta

lying at Z = 0 and W = 0.

3.2.1 The solutions after the interconnection

Consider two open strings of (opposite) maximal angular momentum in the XY plane,

– 8 –
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having the same energy, which cross at some angle at τ = 0 . We will take the gauge

t = Lτ . The solutions are, with 0 ≤ s± = σ±τ
L ≤ 2π,

XIL =
L

2
cos(s+), XIR =

L

2
cos(s−) → XI = L cos

(

τ

L

)

cos

(

σ

L

)

YIL =
L

2
sin(s+), YIR = −L

2
sin(s−) → YI = L sin

(

τ

L

)

cos

(

σ

L

)

(3.6)

XIIL =
A

2
+

L

2
cos(s+ + α), XIIR =

A

2
+

L

2
cos(s− − α)

→ XII = A + L cos

(

τ

L
+ α

)

cos

(

σ

L

)

YIIL =
B

2
− L

2
sin(s+ + α), YIIR =

B

2
+

L

2
sin(s− − α)

→ YII = B − L sin

(

τ

L
+ α

)

cos

(

σ

L

)

(3.7)

A,B and α are constants parametrizing the center of mass coordinate of the string II and

its relative orientation. We take A > 0.

The open strings are parametrized by 0 ≤ σ ≤ πL. Their energy is

E =
1

2πα′

∫ πL

0
dσ∂τX0 = L/α′.

We assume that the two strings interconnect at τ = 0. They intersect at σ0 and σ′
0

respectively. The two strings I, II of equal length recombine forming two strings a, b (or

c, d) of different lengths forming some kink.

The intersection equations are:

0 = B − L sin(α) cos(σ′
0) → L cos(σ′

0) =
B

sin(α)
(3.8)

L cos(σ0) = A + L cos(α) cos(σ′
0) → L cos(σ0) = A + B

cos(α)

sin(α)

A necessary condition for the strings to intersect at τ = 0 is (A − L)2 + B2 ≤ L2. The

intersection equations ~XIIL(σ′
0) + ~XIIR(σ′

0) = ~XIL(σ0) + ~XIR(σ0) imply

~XIIL(σ′
0) − ~XIL(σ0) = ~XIR(σ0) − ~XIIR(σ′

0) ≡ ~Q (3.9)

Now we consider one of the two cases of interconnection shown in figure 2.

The two open strings ~Xa,b(σ, τ) after interconnection will be described by a world-sheet

parameter σ with interval of size ∆aσ = σ0 + π − σ′
0 and ∆bσ = σ′

0 + π − σ0 respectively

(the periodicity interval for the Left and Right part being the double of the above). Their

energy is L(π + σ0 − σ′
0)/2πα′ and L(π + σ′

0 − σ0)/2πα′.

We will find that ~Xa,b(σ, τ) have momentum and, as in appendix A, we will write

~Xa,b;L,R(s) = [ ~Xa,b,L;R(s) ∓ ~ka,bs](0,2∆a,bσ) ± ~ka,bs (+ for L and − for R) (3.10)

– 9 –
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where we define the periodic function [f(s + 2∆σ)](0,2∆σ) = [f(s)](0,2∆σ). In physical units

the momenta are ~pa,b = ~ka,b∆a,bσ/πα′.

The string a is (period 2∆aσ = 2π − 2σ′
0 + 2σ0)

~XaL,R(s) =

{

~XIL,R(s) , −σ0 ≤ s ≤ σ0

~XIIL,R(s − σ0 + σ′
0) ∓ ~Q , σ0 ≤ s ≤ 2π − 2σ′

0 + σ0

(3.11)

Further:

~ka =
1

2∆aσ
( ~XIIL(2π − σ′

0) − ~Q − ~XIL(−σ0)) = − 1

2∆aσ
( ~XIIR(2π − σ′

0) + ~Q − ~XIR(−σ0))

Explicitly

kx
a =

L

2∆aσ
sin(α) sin(σ′

0) , ky
a =

L

2∆aσ
(sin(σ0) + cos(α) sin(σ′

0)) ,

such that [ ~XaL,R(s) ∓ ~ka(s + σ0)] take the same value at s = −σ0 and s = 2π − 2σ′
0 + σ0.

The open string ~Xa(σ, τ) = ~XaL(σ + τ)+ ~XaR(σ− τ) is defined for 0 ≤ σ ≤ ∆aσ. One

can check that ∂σ
~Xa = 0 for σ = 0,∆aσ and any τ .

The string ~Xb is obtained by interchanging XIL,R ↔ XIIL,R and σ0 ↔ σ′
0 in the

formulas for ~Xa. We get ∆bσ = π + σ′
0 − σ0,

kx
b = − L

2∆bσ
sin(α) sin(σ′

0) , ky
b = − L

2∆bσ
(sin(σ0) + cos(α) sin(σ′

0)) .

As expected, the momenta are equal and opposite, that is ~pa = ~ka∆aσ/πα′ = −~pb =

−~kb∆bσ/πα′ and the energy is conserved

E = 2
1

2πα′

∫ π

0
dσ∂τX0 =

1

2πα′

∫ ∆aσ

0
dσ∂τX0 +

1

2πα′

∫ ∆bσ

0
dσ∂τX0 .

Note that the interconnecting equations contain as a particular case the joining con-

sidered in the previous section, which is formally obtained for σ0 = 0 and σ′
0 = π.

The other possible pair shown in figure 2, ~Xc,d(σ, τ), can be constructed in a similar

way. The strings will have energy Ec,d =
∆c,dσ
2πα′ L, with ∆cσ = σ0 + σ′

0 , ∆dσ = π −σ0 − σ′
0.

3.2.2 Black hole events

Having the solutions of the two outgoing strings after the interconnection, we now consider

their evolution and study the possible black hole formation.

We first explore the possibility that the whole mass of the outgoing string collapses to

a size less than the Schwarzschild radius. Specifically, in this subsection we examine two

conditions for black hole formation:

1) At some time during the evolution the average size of the string,

R̄2 ≡ 1

∆σa,b

∫ ∆σa,b

0
dσR2(σ) , (3.12)
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Ne Gµ Nbh (R̄ < Rs) Nbh (R(σ) < Rs)

10000 10−2 1900 – 2000 1100 – 1200

10000 10−3 300 – 320 95 – 110

10000 10−4 40 – 46 1 – 3

50000 10−5 20 – 30 0 – 4

50000 10−6 3 – 5 0

Table 1: Number of black hole events in Ne string collisions.

R2(σ) = (Xa,b(σ, τ) − XCM
a,b )2 + (Ya,b(σ, τ) − Y CM

a,b )2 ,

is less than the Schwarzschild radius Rs = 2GM , where M is the mass of one of the

outgoing strings a or b.

2) At some time during the evolution all points of the string lie within the Schwarzschild

radius, i.e. R(σ) < Rs for all σ.

The masses of the strings a and b are given by

Ma,b = L
∆a,bσ

2πα′

√

(

1 − 4~ka,b
2
)

. (3.13)

It is convenient to express Rs as

Rs = 2(Gµ)
M

µ
, µ =

1

2πα′
. (3.14)

The fundamental string has a tension µ whose value could be anywhere between the TeV

scale and the Planck scale. In brane inflation models, one expects a narrower range 10−12 <

Gµ < 10−6.

We have followed the evolution of the strings after interconnection in Ne events taking

random values for the center of mass coordinates A,B and for the relative orientation α

(within the intersection range). We have seen that, when the strings shrink to a minimum

size which is much smaller than the initial size, they typically have a shape describing an

incomplete circle.4

The number of black hole events Nbh depend on the value of Gµ. Table 1 summarizes

our results. We see that the condition R(σ) < Rs for all σ gives less black hole events.

This is due to cases where a small tail of the string lies outside the Schwarzschild radius.

We also observe that the distribution of black hole events in the region of possible

parameters for the center of mass coordinates A and B is nearly homogeneous. From

the data of table 1 one sees that Nbh (computed with either criterium) has a power-like

dependence with Gµ.

A typical black hole event is shown in figure 3. The string after the interconnection

has a kink at τ = 0, which then separates into two kinks moving in opposite directions.

If the two pieces that form the string have a comparable size, then the strings after the

4In the case of a mass distributed on a circle, a “Laplace” Schwarzschild radius Rs can be defined

by requiring that the gravitational potential at the center is equal to c2/2 (c speed of light). This gives

Rs = 2GM , as in the case of the sphere studied by Laplace.

– 11 –
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Figure 3: A string solution resulting from interconnection possibly leading to gravitational collapse,

after shrinking by its own classical evolution. A generic feature is the formation of two kinks moving

in opposite directions along the string. The figures are not schematic, they are obtained using the

exact classical evolution of the string.

interconnection will have a small angular momentum. This is typically the situation leading

to a contraction of the strings to very small size.

This figure, however, does not give information on how the mass is distributed. In

fact, as we will see in the next section, at some τ = τ0 an important fraction of the mass

is always concentrated in one point. This fact, which is not possible to see in figure 3 (but

can be seen in figure 4), implies that all cases of this collision of Jmax + antiJmax strings

should lead to black hole formation. In particular, this indicates that the cross-section for

the scattering of two long strings to form a black hole is essentially given by the geometric

area of the overlap of the two strings, times g4
o = g2

s , where gs being the closed string

coupling constant.

3.2.3 Inevitable collapse in a generic JI = −JII case

In section 3.1 we have already seen that a black hole will form in the case of the joinings of

Jmax and antiJmax strings. In that case, the string that results from the joining process

shrinks, becoming a point at τ = π/2. That is, just by the evolution dynamics in flat space,

all the mass concentrates in a region of zero size. We argued that energy loss by radiation

or breaking is negligible and inclusion of gravitational effects will reinforce the shrinking

and finally a black hole will form.

In the case of interconnection, we first observe that the same phenomenon of the

complete shrinking of the whole mass occurs when the interconnection takes place at

σ0 = σ′
0 = π/2 and α = 0 (with zero momentum in the transverse direction), that is,

when the interconnection takes place in the middle point at zero angle. In this case, the

interconnected strings have momentum along Y . Again, the string after interconnection

shrinks to zero size at τ0 = π/2, and the same previous argument applies with the conclu-

sion that a black hole will form.

– 12 –
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The underlying mechanism is the cancellation of the dependence in σ of the Left part

with the Right part: in more detail, for that value of τ = τ0, the Left piece that, by

construction, equals the Left piece of XII, cancels with the Right piece that equals XI and

viceversa.

Let us now consider the slightly more general case in which σ0 = σ′
0 = π/2, but α 6= 0.

The periodicity interval in σ of the interconnected strings is again ∆σ = 2π. We find that

at τ0 = π/2−α/2 the dependence in σ cancels in the intervals −π + α/2 ≤ σ ≤ −α/2 and

α/2 ≤ σ ≤ π − α/2. Since the energy, and the mass, of the string is uniformly distributed

in σ, we see that for small α almost all of the mass shrinks to zero size. Also in this case a

black hole will form with a mass of the same order of the mass of the incoming strings. In

fact, the dimension of the incoming strings sets the overall scale, and thus the result holds

for an arbitrary value of the mass.5

By the same reasons, even when α is not small, a finite fraction of the (arbitrarily

large) mass will shrink to zero size and form a black hole.

One can further investigate the general case of generic values of σ0, σ′
0, α (recall that

the periodicity interval in σ of the string a is 2∆a = 2πσ − 2σ′
0 + 2σ0 and of the string b it

is 2∆bσ = 2π − 2σ0 + 2σ′
0). The resulting strings have in general linear momentum in the

XY plane and angular momentum as well. Taking for instance the string b, we find that

a finite fraction of its arbitrarily large mass shrinks to zero size at

τ0 =

{

π
2 − α

2 + 1
2(σ′

0 − σ0) if ∆bσ > α
π
2 − α

2 − 1
2(σ′

0 − σ0) if ∆bσ < α

This fraction is finite except for marginal values of σ0, σ′
0, α, and therefore an arbitrarily

large black hole is the generic result of the interconnection of arbitrarily large strings of

equal and opposite maximal angular momentum.

The above results can be numerically tested by constructing ~Xb,L and ~Xb,R with the

prescription given in the previous section, and then plotting in σ both Xb[σ, τ0] = Xb,L[σ +

τ0] + Xb,R[σ − τ0] and Yb[σ, τ0] = Yb,L[σ + τ0] + Yb,R[σ − τ0]. One can see that, in two

intervals in σ, both X and Y are constant. A sample is shown in figure 4. One can check

that for generic values of σ0, σ′
0, α the figures are similar.

Finally, let us consider the case in which the interconnecting strings have, in addition

to angular momentum, equal and opposite linear momentum along the transverse Z direc-

tion. In this case the interconnected strings will in general also stretch in the Z direction

(periodically in τ , if one forgets gravity) and therefore the finite fraction of the string de-

scribed above will not shrink exactly to zero size at τ0. In order to conclude that a black

hole will still form we have to compare the elongation in Z with the Schwarzschild radius

Rs. The maximum elongation in Z is of order T v, where T ∼ ` is the period of the motion,

` is the length of the strings and v is the relative velocity between the centers of mass. Like

before, the overall string scale factors out and we get the condition, for a non relativistic

5In particular, this means that for strings with masses much larger than the Planck mass (as it is obviously

the case for astrophysical cosmic strings) quantum gravity effects can be ignored, since the Schwarzschild

radius will be much larger than the Planck scale.
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sigma

X,Y

Figure 4: For generic values of the center of mass parameters parameters A, B and relative orien-

tation α, part of the string shrinks becoming a point during the time evolution. In the figure, these

are the values of σ for which both X (thicker line) and Y (thiner) are constant.

center-of mass motion of the string, that the ratio of the relative velocity v between the

strings to the velocity of light (c = 1) should be smaller than Gµ times some number of

order 1 depending on σ0, σ′
0.

As already mentioned, gravitational collapse of JI = −JII strings for generic initial

data is expected to occur also in the case of the more stable open string which oscillates in

the transverse dimension (2.3), provided the string size `extra in the extra dimensions is a

small fraction of the overall size L, but still much larger than ls =
√

α′ to ensure stability.

More precisely, µ−1/2 ¿ `extra < GµL or ls
L ¿ θ < Gµ.

3.2.4 Interconnection of rotating closed strings on M4 × S1

Now consider the interconnection of the long-lived closed strings of section 2.1. Let us

consider the case of two strings having the same winding in W . For the X,Y coordinates,

the solutions of the strings I and II are the same as in eqs. (3.6) and (3.7), now with

σ ∈ [0, 2π). Similarly, the solutions after interconnection are the same as in eqs. (3.10)

and (3.11). The closed strings ~Xa,b(σ, τ) = ~Xa,bL(σ + τ) + ~Xa,bR(σ − τ) are defined for

0 ≤ σ ≤ 2∆a,bσ.

For these closed strings, the interconnection takes place at two points σ0 and 2π − σ0

for the string I and σ′
0 and 2π − σ′

0 for the string II.

The intersection in the W coordinate requires that WI(σ0) = WII(σ
′
0) and WI(2π −

σ0) = WII(2π − σ′
0), where we take WI = RσI , WII = RσII. This implies σ0 = σ′

0 and, in

turn, 2∆a,bσ = 2π, consistently with the fact that the strings a and b have both winding

numbers equal to 1.

The results of the previous section tell us that for τ = τ0 = π/2−α/2 a finite fraction of

the arbitrarily large mass of the string undergoes gravitational collapse, for generic values

of α.

Classically, the condition σ0 = σ′
0 implies that rather than a geometric area we get

a one-dimensional “cross-section”. Quantum mechanically, however, the interconnection

process can also take place if the interconnecting points are separated by a distance of

order
√

α′. Therefore the cross section for the collapse of a finite fraction of the string will

be of the order of the string length times
√

α′, times g4
s .
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A. String splitting and joining: general formalism

A.1 Splitting of closed and open strings

Consider first the splitting of a closed string. The initial closed string is described by the

solution

X0 = α′Mτ , ~XR = ~XR(σ−) , ~XL = ~XL(σ+) , (A.1)

with σ± = σ ± τ and σ ∈ [0, 2π). In this gauge X0 = α′Mτ , the Virasoro constraints

become:
(

∂s
~XR,L(s)

)2
=

1

4
(α′M)2 . (A.2)

The momentum of the string is α′~p = ~pR + ~pL, with

~pR = −
~XR(2π) − ~XR(0)

2π
, ~pL =

~XR(2π) − ~XR(0)

2π
. (A.3)

For a string with winding w around a compact dimension X of radius R, one has pR =
1
2 (α′p − wR), pL = 1

2(α′p + wR), so that pL − pR = wR. If pR,L 6= 0 then XR,L(s) is not

periodic. In such a case, one can define a periodic function by substracting the non-periodic

part,

XR(s) =
(

XR(s) + pRs
)

− pRs ,

XL(s) =
(

XL(s) − pLs
)

+ pLs . (A.4)

The functions within the parentheses
(

· · ·
)

are continuous – but kinks are allowed – and

periodic by definition . This simple observation will be useful for the construction below.

Now we assume that at τ = 0 there is a contact between two points of the closed string

and the string breaks into two fragments ~XI, ~XII,

~XI = ~XIR(σ−) + ~XIL(σ+) , ~XII = ~XIIR(σ−) + ~XIIL(σ+) . (A.5)

The fragment solutions are uniquely determined by the condition that the functions X and

their first time derivatives are continuous at τ = 0. The first fragment is defined to be

the piece of the string with σ1 < σ < σ2 while the second fragment is the remaining piece

σ2 < σ < 2π + σ1. The outgoing strings will carry in general non-zero momentum. Since

it is conserved, this can be computed at τ = 0. They are given by α′~pI = ~pIR + ~pIL,

~pIR = −
~XR(σ2) − ~XR(σ1)

2π
, ~pIL =

~XL(σ2) − ~XL(σ1)

2π
,

~pIIR = −
~XR(2π + σ1) − ~XR(σ2)

2π
, ~pIIL =

~XL(2π + σ1) − ~XL(σ2)

2π
. (A.6)
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Consider the general case where there may be compact dimensions of radii Ri, i =

1, . . . ,D − 1. This includes the uncompact R = ∞ case. The breaking is possible if

Xi(σ1, 0) = Xi(σ2, 0) mod niRi where ni are integers (there is no summation over i). For

uncompact dimensions, ni = 0. This condition can be written as

Xi L(σ1, 0) − Xi L(σ2, 0) = −Xi R(σ1, 0) + Xi R(σ2, 0) + 2πniRi (A.7)

or

pI
iL = pI

iR + wI
iRi (A.8)

with wI
i = ni. The breaking occurs if this condition can be satisfied for all i, for some

σ2 and σ1 (in some cases, it could be that there are several solutions, i.e. many contact

points). Similarly, since piL − piR = wiRi ,

pII
iL = pII

iR + wII
i Ri , wI

i + wII
i = wi . (A.9)

The energies are

EI =
(σ2 − σ1)

2π
M , EII = M − EI =

(2π + σ1 − σ2)

2π
M . (A.10)

The masses of each of the outgoing fragments are then given by

M2
I = M2 (σ2 − σ1)

2

4π2
− ~pI

2 ,

M2
II = M2 (2π + σ1 − σ2)

2

4π2
− ~pII

2 . (A.11)

This defines MI in terms of MII and in terms of the quantum numbers of the original string.

The initial condition uniquely determines the outgoing solutions to be given by

~XIR(s) =

[

~XR(s) −
~XR(s2) − ~XR(s1)

s2 − s1
s

]

(s1,s2)

+
~XR(s2) − ~XR(s1)

s2 − s1
s ,

~XIL(s) =

[

~XL(s) −
~XL(s2) − ~XL(s1)

s2 − s1
s

]

(s1,s2)

+
~XL(s2) − ~XL(s1)

s2 − s1
s , (A.12)

where we have introduced the symbol
[

f(x)
]

(a,b)
≡ f̂(x) as the periodic function defined

by f̂(x + n(b − a)) = f̂(x) , x ∈ [a, b) and n is an integer.

Similarly, the second fragment is described by the solution

~XIIR(s) =

[

~XR(s) −
~XR(2π + s1) − ~XR(s2)

2π + s1 − s2
s

]

(s2,2π+s1)

+
~XR(2π + s1) − ~XR(s2)

2π + s1 − s2
s

~XIIL(s) =

[

~XL(s) −
~XL(2π + s1) − ~XL(s2)

2π + s1 − s2
s

]

(s2,2π+s1)

+
~XL(2π + s1) − ~XL(s2)

2π + s1 − s2
s

By the above equations we have required the Left and Right sectors of the string to be

the same at τ = 0 as functions of the world-sheet parameter σ in the interval 0 ≤ σ ≤ 2π.
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This implies also the continuity of the first derivative in τ at τ = 0 since ∂τ
~Xτ=0 =

∂σ
~XL(σ) − ∂σ

~XR(σ).

It is convenient to rescale the s variable to have 2π periodic functions. We define, for

the fragment I,

s = ŝ
(s2 − s1)

2π
+ s1 , (A.13)

whereas for the fragment II

s = ŝ
(2π + s1 − s2)

2π
+ s2 . (A.14)

Note that this implies that both σ and τ get rescaled, and that we imposed continuity of

the derivative with respect to the unrescaled τ .

The solutions are then as follows:

~XIR(s) =

[

~XR(ŝ
(s2 − s1)

2π
+ s1) + ~pIRŝ

]

(0,2π)

− ~pIRŝ

~XIL(s) =

[

~XL(ŝ
(s2 − s1)

2π
+ s1) − ~pILŝ

]

(0,2π)

+ ~pILŝ

~XIIR(s) =

[

~XR(ŝ
(2π + s1 − s2)

2π
+ s2) + ~pIIRŝ

]

(0,2π)

− ~pIIRŝ

~XIIL(s) =

[

~XL(ŝ
(2π + s1 − s2)

2π
+ s1) − ~pIILŝ

]

(0,2π)

+ ~pIILŝ

The above construction holds also for open strings (see [22]). In this case one has simply to

remember that for an open string Xµ
R(σ−) = Xµ

L(−σ−) and that the interval in σ is [0, π).

It is useful to explicitly separate the momentum term as follows:

Xµ
L(σ+) = Fµ(σ+) + α′pµσ+ + cµ, Xµ

R(σ−) = Fµ(−σ−) − α′pµσ− − cµ (A.15)

where cµ is a constant and Fµ is periodic i.e. Fµ(s) = Fµ(s + 2π) so that

Xµ
open(σ, τ) = Fµ(σ + τ) + Fµ(−σ + τ) + 2α′pµτ . (A.16)

A.2 Joining of open strings

Now consider two open strings I and II in the CM frame with energies EI and EII. We

assume that at τ = 0 one end of the string I gets in contact with one end of the string II,

that is ~XI(0, 0) = ~XII(π, 0). If the two strings join making one final string ~X, that one will

have a mass M = EI + EII.

Therefore since (∂sI

~XIL,R)2 = (α′EI)
2, (∂sII

~XIIL,R)2 = (α′EII)
2 and for the final

string (∂s
~XL,R)2 = (α′M)2, the wordsheet parameter 0 ≤ s ≤ 2π of the final string must

be related to the ones of the joining strings by sI,II = M
EI,II

s + cI,II.

– 17 –



J
H
E
P
0
8
(
2
0
0
6
)
0
7
9

As it has been said in the splitting case, the matching requirement is equivalent to

requiring that the resulting ~XL,R(s) is piecewise identical to ~XIL,R(sI) and ~XIIL,R(sII).

Therefore we get ~X by the following construction:

~XL,R(s) =

{

~XIIL,R( M
EII

s) −EII

M π ≤ s < EII

M π

~XIL,R(M
EI

(s − EII

M π)) EII

M π ≤ s < 2π − EII

M π
(A.17)

Since ~XL,R(s) must be 2π periodic, joining is only possible if

~XIIL,R(−π) = ~XIL,R((
M

EI
− EII

EI
)2π) .

As a particular case, consider two strings of equal mass, carrying equal and opposite

momenta, described by the solutions

X0I = 2α′Eτ , ~XIL(s) = ~FI(s) + α′~p

(

s − π

2

)

, ~XIR(s) = ~FI(−s) − α′~p

(

s − π

2

)

(A.18)

X0II = 2α′Eτ ~XIIL(s) = ~FII(s) − α′~p

(

s − π

2

)

, ~XIIR(s) = ~FII(−s) + α′~p

(

s − π

2

)

where ~FI,II(s) is 2π-periodic and by assumption (∂s
~FI + α′~p)2 = (∂s

~FII − α′~p)2 = (α′E)2.

The joining condition ~XI(0, 0) = ~XII(π, 0) implies ~FI(0) = ~FII(π).

Explicitly, in this case EI = EII = M/2, the resulting solution after the joining is given

by

~XL,R(s) =

{

~XIIL,R(2s) −π
2 ≤ s < π

2

~XIL,R(2s − π) π
2 ≤ s < 3π

2

(A.19)

Note that ~XL,R(−π
2 ) = ~XL,R(3π

2 ) and that Xµ(σ, τ) has the open string structure (A.16)

with zero momentum. Outside the interval −π
2 ≤ s < 3π

2 , ~XL,R(s) is defined by its periodic

extension, i.e. by replacing s by ŝ = s − [s/2π].

The resulting string being periodic, after one period ∆τ = 2π it comes back to the

original configuration. Being an open string, it could split again at anytime. For example,

at ∆τ = 2π it could split into the two original pieces ~XI,II or else continue in its periodic

motion.

As an application, consider now the case where two open strings with maximum angular

momentum move in the same clockwise sense. The solutions are X(τ, σ) = XL(τ + σ) +

XL(τ − σ) with

XIL(s) =
L

2
cos s, YIL =

L

2
sin s , (A.20)

XIIL(s) = L +
L

2
cos s, YIL =

L

2
sin s . (A.21)

The main difference with respect to case of opposite angular momenta discussed in sec-

tion 3.1 is that, at the moment of the joining at τ = 0, the ends are now moving with

opposite velocities. In the previous case, they were moving with the same velocity and, as

a result, the string which resulted after the joining was smooth. Now, because the attached

ends are moving at opposite velocities, a kink will be formed. This case illustrates that the
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formation of kinks in string joining (as in string splitting [22]) is generic, since the generic

situation is that the velocities of the two joined ends are different (as vectors, the endpoints

of open strings always move at the speed of light).

The solution after the joining can be constructed using eq. (A.19). Beside the formation

of the kink, another interesting feature is that the open strings become folded cyclically

during the evolution.

A.3 Joining of closed strings

Consider two closed strings I and II described by the solutions

X0I = α′EIτ , ~XIR = ~XIR(σ−) , ~XIL = ~XIL(σ+) ,

X0II = α′EIIτ , ~XIIR = ~XIIR(σ−) , ~XIIL = ~XIIL(σ+) . (A.22)

We assume that at τ = 0 one point of the closed string I (say σI = 0) gets in contact with

one point of the closed string II (say σII = π) , and the strings join. The resulting solution

is again uniquely determined by the assumption of continuity of X and Ẋ at τ = 0.

Now the solution after the joining is

Xµ(σ, τ) = Xµ
L(σ + τ) + Xµ

R(−σ + τ) , (A.23)

where Xµ
L(σ + τ) and Xµ

R(−σ + τ) are determined by continuity of X and Ẋ at τ = 0.

When the energies are the same, we find that Xµ
L(σ + τ) and Xµ

R(−σ + τ) are given by

eq. (A.19). When they are different, the solution is constructed in a similar way as (A.17).
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